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Abstract

We present the detailed construction of an exact solution to time-dependent and
steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed
for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with
variable viscosity. The construction is done by choosing for the specified ice surface
and bed a velocity distribution that satisfies both mass conservation and the kinematic
boundary conditions. Then a compensatory stress term in the conservation of momen-
tum equations and their boundary conditions is calculated to make the chosen velocity
distributions as well as the chosen pressure field into exact solutions. By substitut-
ing different ice surface and bed geometry formulas into the derived solution formulas,
analytical solutions for different geometries can be constructed.

The boundary conditions can be specified as essential Dirichlet conditions or as pe-
riodic boundary conditions. By changing a parameter value, the analytical solutions
allow investigation of algorithms for a different range of aspect ratios as well as for dif-
ferent, frozen or sliding, basal conditions. The analytical solutions can also be used to
estimate the numerical error of the method in the case when the effects of the bound-
ary conditions are eliminated, that is, when the exact solution values are specified as
inflow and outflow boundary conditions.

1 Introduction

Model verification is crucial in developing a numerical model. The ice-sheet model-
ing community has been using two tools to verify models, comparison of numerically
computed solutions to analytical solutions when possible, and intercomparison, that is,
measuring differences between various models’ results on the sets of simplified geom-
etry benchmark tests.

For shallow-ice approximation (SIA) models, the simplified geometry tests as well
as the results of intercomparison of different SIA models can be found in (Huybrechts
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et al., 1995). As for the exact solutions for SIA equations, two techniques have been
used to generate analytical solutions, the similarity reduction technique (an approach
that identifies equations for which the solution depends on certain groupings of the
independent variables rather than depending on each of the independent variables
separately (Nye, 2000; Halfar, 1981, 1983; Bueler et al., 2005) and the manufactured
solutions technique (an approach that chooses a reasonable “solution” function, for
example, a velocity-field and pressure, substitutes them into the Stokes equations,
and determines the body force necessary to make the chosen functions into actual
solutions (Bueler et al., 2005, 2007; Bueler and Brown, 2006).

For higher-order models and full-Stokes models, the simplified geometry tests and
the results of intercomparison of different models can be found in (Pattyn et al., 2008).
As for the exact solutions, mathematical work has mainly focused on the flow of linear
media, and quasi-analytical solutions have been found for the first-order approximation
equations for computing the three-dimensional stress and velocity field in grounded
glaciers in (Blatter, 1995). Analytical solutions have been found describing transient
two dimensional flow (Hutter, 1980, 1983; Johannesson, 1992), three-dimensional
steady-state flow (Reeh, 1987; Johannesson, 1992) and transient evolution flow (Gud-
mundsson, 2003).

All the above solutions give physical insight into the flow processes; however, they
cannot be easily used to benchmark the numerical solutions. For example, Gudmunds-
son in (Gudmundsson, 2003) obtained the three-dimensional solution of the linearized
zeroth-order problem for a linear viscous medium. To use this solution for benchmark-
ing numerical ice sheet models, the exact error estimate must be known (Raymond
and Gudmundsson, 2005).

In this paper, we present the detailed construction of a manufactured exact solution
to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The
solutions are constructed for three-dimensional (3-D) full-Stokes and two-dimensional
(2-D) flowline ice sheet models with variable viscosity. The construction is done by
choosing for the specified ice surface and bed the velocity distributions that satisfy
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the mass conservation equation and the kinematic boundary conditions, and by then
calculating the required force distribution that makes the chosen velocities and pres-
sure into exact solutions of the conservation of momentum equation and its boundary
conditions. In the appendices we give the formulas that can be used to calculate the
compensatory stress terms for the momentum equation in the 2-D and 3-D full-Stokes
models and a fortran 77 code to calculate stress terms for the 2-D model.

The steady-state solutions constructed in this paper are variations of the benchmark
experiments A and B in (Pattyn et al., 2008). However, by substituting different ice
surface and bed geometry into the derived formulas, analytical solutions for different
geometries can also be constructed.

The boundary conditions can be specified as essential Dirichlet conditions or as pe-
riodic boundary conditions. By changing a parameter value, the analytical solutions
allow modelers to investigate their solutions for a range of aspect ratios as well as for
different, frozen or sliding, basal conditions. Finally, the analytical solutions may help
the modelers to estimate the numerical error in the case when the effect of the bound-
ary conditions are eliminated, that is, when the exact solutions values are specified as
inflow and outflow boundary conditions.

2 Model physics

2.1 Model equations

We consider an ice sheet model in the Cartesian coordinates X = (X,y,Z) with the do-
main 0<X<L,0<y<L, b(X.7)<Z<§(%.y.f), where f is time, §(%,7.f) defines the
surface and H(X, 7) defines the base of the glacier.

Bed elevation A(X,7) and accumulation rate 2 are time independent, while surface
elevation 5(X,y,f) can change with time. The solution is the velocity vector v = (i, 7, W)
and ice pressure p. Dimensional variables in this work are denoted with a tilde and
non-dimensional variables without.

498

TCD
4, 495-560, 2010

Isothermal
full-Stokes ice sheet
models

A. Sargent and
J. L. Fastook

: “““ “““


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-print.pdf
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

The field equations for the isothermal ice sheet model consist of the conservation of
mass and the conservation of momentum:

ou ov ow
+
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where g is the ice density, g is the gravitational acceleration, /i is the effective viscosity

_ Bl1(oa ov\® 1(oa ow\® 1[0V ow)?

UH=FZ N \g=1t5=) vl ts) ol =t 5=
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B is a temperature-independent rate factor, and n is the stress exponent.

2.2 Boundary conditions

The model is time-dependent in the usual sense that the ice sheet geometry evolves
according to a mass continuity equation. We assume that the ice has a hard bed,

% = 0. The kinematic boundary conditions applied at the upper and lower surfaces of

the ice mass are as follows:

08 . _ . _-08 _,_ _ _-
—+ d(x,y,8,t)— +v(x,y,5,1)
ot ox
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-w(%.y.,5.H=a, (6)
499

Q)|Q
<t

TCD
4, 495-560, 2010

Isothermal
full-Stokes ice sheet
models

A. Sargent and
J. L. Fastook

1] i


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-print.pdf
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

a(%.y.b, f)ab 7(%, y,5,f)6—‘f —w(X.y,b,f)=0. (7)
ox oy

The stress-free boundary conditions at the upper surface 3(X,7,t) are defined as:
1[ 05 oa .\ 0s.(oa ov\ .[(od ow
— 20— —+—]| =0, 8
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505 3)) -5 (2(5 - 52)) + (a5 9 | - 10

where 7, = \/1 + (6)() + (g_;:)?.
For the frozen-based grounded ice, the boundary conditions at the bed H(%,y) can
be specified as Dirichlet conditions:
a(x,y,b,f) =0,
v(x,y,b,t) =0,
w(X.y,b,t) =0,
p(X.7,b.T) = pd(5 - b).
For the ice with sliding bed, the shear stresses may be specified at the bed H(X,§) as
Neumann conditions:
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where 7, = \/1 + (ab) + <@> and 32 is the friction coefficient.

ox oy
Along the glacier's upstream and downstream boundaries, either periodic
f e g o om OF o OF
10.y.2)=f(L.y.2), =(0..2)= —(L.V.2);
ox ox
f(%,0,2)=f(%,L,2), §Z(i;o”2) a’c( %,L,2);
ox 0x

wheref =i,v,w,p,

or Dirichlet boundary conditions

(I y.2)= exact( i,y,2), i=0,L;
(X / Z) fe xac ( / ) j=0,L;
wheref =i,v,w,p

may be specified. Here we assume that functions f,, ,.; are known.

2.3 Dimensionless equations

To non-dimensionalize variables, we choose the following typical values: Z —the mean
thickness of the ice-sheet, L — the length of ice-sheet, U — a typical velocity in the hori-
zontal direction, W — a typical velocity in the vertical direction, P — the mean pressure,
A — the mean accumulation/ablation rate, and introduce the following non-dimensional

variables (variables without tilde):

z=2z,5=27s,b=2b,

X=Lx,y=Ly,

g=Uu,v=Uyv, (14)
w=Ww,
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s To further simplify the equations, we introduce the aspect ratio parameter &:
4
6=—
L
and require that scale factors L, U, W, and P satisfy the following relationships:
1 ;2
B(U\" .., WL _ _Z > PU
E(Z) —ng—P,E—1,T—W,A—W,ﬁ —T.

(15)

(16)

The nondimensional steady-state conservation of mass and momentum equations are

10 then as follows:
ou OJv 6W_

5+@+E_’
oeuge+p) O(u(3+%)) o(u(1a+s2))
0 ox +0 oy 0z
(k) a(ugee) ok
)

oy ox
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The kinematic boundary conditions are invariant under the chosen set of scalings:
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ob ob
ulx,y,b(x.y).t)— +v(x,y,b(x,y).t)— -w(x,y,b(x,y),t) =0. (23)
ox oy
5 The stress-free boundary conditions at the upper surface s(x,y,t) become as follows:
1[ .0s ou ds (éu 0dv 10u ow
—|-6—2u— S—u| —+— +65— 0, 24
.| %ax ( Hox p) ayH (ay+ax)+“<5az ax)] (24)
1 0s (Ou OJv 0s ov 10v ow
—|-6—u|l—+—1,-6 2U— 66— =0, 25
rs L 6X“<6y+6X) 6y< uc’?y p) +u(60 ¥ ﬁy)] 25)
1[ .0s ow 10u ds ow ov ow
—|-6— 6— -6— O—+—— 2U— =0, (26
Al ax(“( ox +662)) ay(“( 6y+662))+('u62+p)] (26)

2
where ry = \/1 +62(85)% 4 62 <6y> :
10 The Neumann boundary conditions at the lower surface b(x,y) become as follows:

1 ob ou ob (0u 0Ov 10u ow

—6—2— +0—U|l—+—)-ul=—=—+6—|| =-p%vu, 27
r, L 0x ( ax p) Oy (6y+6x) u<662+ ax)] pu @7
1 ob (0u 0Ov ob ov 10v ow

— 5— —+—|+6 2U— —ul==—+6—\|=-p%v, 28
7 | ax“(ay+ax)+ ay(“ay p) ”(6az+ c’)y)] pv (28)
1 ob ow 10u ob ow 10v ow

— 6— 65— 6— b—+——))-2u— =1, 29
Al ax(“( ox "50z ))+ ay(“( ay*éaz)) (“az”’)] (29)

where r, = \/1 +62(%) +62 (6y) .
15 In scaled units, the glacier thickness and length are equal to unity.
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3 Manufactured analytical solutions of the 2-D full-Stokes isothermal flowline
ice sheet model

3.1 Deriving an exact solution

Two-dimensional full-Stokes flowline models have only one horizontal dimension, x.
So all terms in the Eqgs. (18-29) that have variables y or v, as well as all partial y—
derivatives of velocities and pressure can be removed.

To satisfy the 2-D version of the kinematic boundary conditions (22—-23), we assume
that in the interior of the domain, where s(x,t) > b(x), the vertical velocity w is

db s- z 0sz-b N @_é z-b
dx s-b axs b ot s-b’

From Eq. (30), it follows that

(30)

w(x,z,t)=u(x,z, t)(

ds db ds .
_ _ 95 _ab 95_ 4
6W_6u(dbs z 0sz b)+uax dx , ot

3z 9z\dxs—b  oxs-b s-b  s-b’
If we substitute (31) into the incompressibility Eq. (17), we obtain the following equation
containing only variable v and its derivatives:

(31)

ou 6u<dbs—z asz—b)+u%—% %‘3

—t— | ——+ = =0. 32
ox "9z \dxs—b oxs-b) " s-b "sob (32)

Equation (32) is a first-order quasi-linear partial differential equation with two inde-
pendent variables (x and z) and one dependent variable (u). The system of ordinary
differential equations

dx dz 3 du 33
1 " dbs—z  0sz=b = 8s_db ds_4 (33)
TxsBToxsh  yligyd

s—b ' s—b
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is called the characteristic system of Eq. (32). If we can find two particular independent
solutions of this system, which are called the integrals of system (33), in the form

O(x,z,u)=cq, W(X,z,u)=Cyp, (34)

where ¢4 and ¢, are arbitrary constants, then the general solution of Eq. (32) can be
written as

0(¢.w)=0, (35)

where 6 is an arbitrary function of two variables. With Eq. (35) solved for ¢, the general
solution can be written in the form

P =0(y), (36)

where 0§ is an arbitrary function of one variable.
Thus, to solve Eq. (32), we have to find integrals ¢ and y of the system (33). The
first integral of the system (33) can be found by solving equation

ﬂ_ du

- 37
T g, )
s-b s-b
Equation (37) can be re-written as follows:
0s _db 0s _ 5
du  ox " dx ot 4
—+ u=-— . 38
dx s-b s-b (38)

We multiply both sides of Eq. (38) by s— b and recognize that the left side of the equa-

tion is now the following product rule, (s - b)3% + (42 - 4y y = w. After replacing
the left side of the equation with this product rule, we obtain:

Olu(s-b 0 :

Olus—bN_ _9s . (39)

ox ot
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Equation (39) has a solution

u-(s-b)= —/(ﬁ—a') dx +cq, orcy =u~(s—b)+/(%—é) ax, (40)

ot
where ¢4 is a constant.
The second integral of the system (33) can be found by solving equation
ax dz
{1  dbs-z, 9sz-b

— = 4 =

dx s-b ° 0x s-b

(41)

Equation (41) can be re-written as:

ds _db i db
dz_ox-ax __oxb- @S 42)
dx s-b s-b
After multiplying both sides of Eq. (42) by s+b, the equation can be transformed into:
d z d b
——)===—]. 4
ax <s—b) dax (s—b) (43)
Equation (43) has a solution

z b z-b
557555 Tp o
Thus, the general solution of Eq. (32) can be written as

0s . Z-b(x)

Ol\u-(s(x,t)-b —-4|dx,——— | =0, 45

(vtstr-s00+ [ (5 -2)ax 557505) o

where @ is an arbitrary function of two variables. With Eq. (45) solved for u, the general
solution can be written in the form

B 1 Z-b(x) 1 0s .
w20~ e (s m=ats) e s Lt ~4) o
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where ¢ is an arbitrary function of one variable.

The formula (46) shows that the functions satisfying the kinematic boundary condi-
tions (22—23) and the conservation of mass Eq. (17), derived under assumption (30),
depend on the form of the function ¢ and ice surface and bed curves.

Choose function ¢ as follows:

O(x) =c, [1 ~( -x)l] +cp, (47)

where A, ¢,, and c¢,, are constants. The first term on the right-hand side of (47) may be
considered as component of velocity associated with internal deformation, and ¢, as
the basal sliding velocity coefficient.

Then the velocity field satisfying the 2-D versions of the kinematic boundary condi-
tions (22—23) and the conservation of mass Eq. (17) is:

Cy S—Z 1
u(x,z,t):s_b[1—(s_b)] - b - b/(——a) (48)

dbs-z 0sz-b 0s .\z-b
= —-a|—, 49
wix.2.1) = “(X”)<d Xs—b Oxs-b b)+<0t )s—b (49)
For a zero-accumulation (a = 0) steady-state @ = 0) flow with frozen bed (¢, = 0),

the horizontal velocity scaled to the surface veI00|ty can be written as a function of ice
scaled depth d = £=%:

A
u(x,z.t)=u(x,s,t) [1 - (%) ] =u(x,s,t) [1 - d*] . (50)

This expression shows that the horizontal velocity from internal deformation increases
with power 1 of ice depth. For A =4 this is consistent with lamellar flow (der Veen,
1999) as shown in Fig. 1.
In addition to velocities, the ice pressure function should also be constructed. The
manufactured solution for the ice pressure can be chosen, for example, as in Pattyn’s
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higher-order model (Pattyn, 2003):

Y aaa Lo0u ... . .
p=0”—pg(s—2)=2u5—pg(s—2),

or in nondimensional form:
ou
Z ) =2u— - (s-2). 51
p(x.2,t)=2p——~(s~2) (51)

The constructed velocity and pressure functions do not necessarily satisfy the con-
servation of momentum Egs. (18-20) or the surface and basal boundary conditions
(24—26) and (27-29). To make the constructed velocity and pressure functions into
exact solutions of these equations, we substitute them into the equations and calculate
the right-hand side functions that match these solutions. This can be done when a
specific surface s(x,t) and bed b(x) are chosen.

Equations (48—49) and (51) are solutions of flow with a general surface s(x,t) and
bed b(x). Below are specific solutions for a particular case of an ice surface and a
sinusoidal bed, similar to the benchmark experiment B in (Pattyn et al., 2008).

3.2 A manufactured solution for a time-dependent flow with a sinusoidal bed

To generate a particular solution, assume a flow with zero accumulation/ablation rate,
a =0, a sinusoidal bed defined as in (Pattyn et al., 2008), and an ice surface that
changes from a linear sloping surface to the one that is draped over the topography of
the bed:

S(x,1) = So(x) + n(x)y(t), Sp(x) = —x-tan(a), (52)
b(x) = so(x) =1+ n(x), (53)
where
n(x) = %sin(an), y(t)=1-e7%! ¢, is a constant. (54)
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For a flow down an infinite plane with a mean inclination tan(a), periodic bound-
ary conditions for a function f are defined as follows: f(0,z +tan(a)) =f(1,z) and the
analytical solutions (48), (49), (51) satisfy these conditions for geometry (52—-53).

Appendices A and C1 contain the formulas and a simple fortran 77 code that can be
used to calculate the exact solutions and compensatory stress terms for the momen-
tum equation in the 2-D flowline model. The code dumps the generated solutions to
specified files. All input data are specified in file parameter 2d.h

Parameters of the flow are chosen as follows: the starting linear slope of the ice
surface a = 0.5°, coefficient in (54) ¢; = 107°, and the constants in (48) c, = 107°,
Cp= 10’6, and 1 =4. This experiment can be considered as an ice-stream flow over a
bumpy bed. The values of constants c,, ¢,, and c¢; chosen to generate a reasonable
dimensional values of the flow functions which calculated from nondimensional values
using formulas (14). Values of flow parameters and constants are chosen from (Pattyn
et al., 2008) and are given in Table (1). The length scale of the domain is chosen 80
km, which results in aspect ratio 6 = 81—0. Velocity is shown in km/a and pressure in kPa.

Figure 2 shows the bed (53) and transformation over time of the ice surface of equa-
tion (52) (left graph) and the transformation of the norm of the surface velocity over
time (right graph). The ice surface changes from a linear sloping surface to the sur-
face draped over the topography of the bed. Ice thickness is spatially uniform when
the steady-state solution is reached. The surface velocity at the beginning is anti-
correlated with the ice thickness — it is larger over the bump than over the trough. At
the steady-state, the surface velocity is spatially uniform and does not depend on the
bed topography.

Figures 3, 4, and 5 show the horizontal velocity, vertical velocity, and pressure at the
beginning and at the time when the steady-state solution is reached. The ice pressure
is proportional to the ice thickness. At the steady-state, it is equal zero at the ice
surface.
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3.3 A steady-state manufactured solution for a flow with a linear sloping surface
and a sinusoidal bed

To generate a steady-state solution, assume that in (52) the function y(t) = 0, that is,
a linear sloping surface and a sinusoidal bed are defined similar to the ones of the
benchmark experiment B in (Pattyn et al., 2008):

S(x) = —x-tan(a), (55)
b(x) =s(x)-1+ %sin(an). (56)

If we substitute the above functions for bed and surface into (48—49), then the corre-
sponding steady-state flow’s velocities are as follows:

A
u(x.2) = Cy 1 < —z—xtan(a)> N Cp (57)

- 1 i 1 i 1 ai ’
1-3sin(2mx) 1-3sin(2mx) 1-35sin(2mx)

(58)

w(x,z) = u(x,z) gbs-z +§2_b

ST \dxs-b dxs-b)

Choice of coefficient ¢, = 0 generates frozen bed flow with zero basal velocities,
while ¢, # 0 generates flow with a sliding bed.

As can be seen from (57-58), if 1 > 0 then
atz=b, u(x,b)=0, w(x,b)=0;

c c gs
atz=s, u(x,s)= —— ==X w(x,s)=2
(x.s) Py (x.8) m

The last expression shows the conservation of mass flux, g = hu = ¢, = constant. This
anti-correlated relationship between horizontal velocity and ice thickness is consistent
with the simulation of the smallest length scale L =5 km Experiment B in (Pattyn et al.,
2008), by all full-Stokes models.
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Figures 7 and 8 show the horizontal and vertical velocity, ice pressure, and the norm
of the surface velocity corresponding to the flow with a linear sloping surface with a
slope a =0.5" and a frozen sinusoidal bed (c, = 0). The constants in (57) are chosen
as ¢, =107° and 1= 4.0 and the aspect ratio & = .

Figure 9 shows the compensatory stresses 2, and %, in the conservation of mo-
mentum equations calculated for the aspect ratio 6 = 8‘—0. The graphs show that both
stresses have largest values above the bump.

4 Analytical manufactured solutions of the 3-D isothermal full-Stokes ice-flow
model

Assume as in the 2-D case that in the interior of the domain, s(x,y.t) > b(x,y), the
vertical velocity w is:

§2£:£+§££:2)

Oxs-b 0xs-b

Obs-z 6sz—b) N (63 ) z-b

w(x,y,z,t) = u(x,y,z,t) ( (59)

— +— ——-a|—,
oys—-b 0ys-b ot s-b
then the kinematic boundary conditions (22—23) are satisfied. From (59), it follows that

ow _du (@s—z ﬁsz—b)+ %—%

9z 0z\oxs—b oxs-b) Y s-b

6v(6bs—z 6sz—b)+vg_§‘% 1 (63 )

— | = — — -4
T oz\oys-b"oys-b) " Ts—b "s-b\ot

If we substitute (60) into the incompressibility Eq. (17), we obtain the following equa-
tion containing only variables v, v and their derivatives:

ou au(abs—z Osz—b) %—2—‘;

+ v(x,y,z)(

(60)

ax "az\axs-b T axsp) TV sp (61)
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ov 6v(0b s-z 6sz—b)+vg_;‘%

+@+E Es—b+0_ys—b s—b
1 0s .
+E<E—a) =0.

Equation (61) is a first-order quasi-linear partial differential equation with three inde-
pendent variables (x, y, and z) and two dependent variables (v and v) of type:

ou O0u Ov ov
Flxy.zulxyzt)vixyzt), — — —,—
(y oy, vxy )6x626y02)
Similar to the 2-D flowline manufactured solutions, we choose velocity u(x,y,z,t) as
the following function:

=0. (62)

s-z\™M 1
u(x,y,z,t)y=c,(s-b) 1—(5) +cbxm, (63)
or
y A 1
u(x,y,z,ty=c,h" (1 -d 1) +Cbxz, (64)

where vy, Ay, C4, Cpy are constants, d(x,y,z,t) == is scaled ice depth, and
h(x,y,t)=s-bis ice thickness.
Then the derivatives of function u(x,y,z,t) are

ou oh 0d Cpy0h

b vi-120 (4 _ gt = yigh-129 _Zbox 201

— = Cx¥ih” ax(1 d1) LU 7 x (65)
% =c, A h gt T,

Substituting (64) and (65) into (61) and using relations g—}’jg_;g + g—iﬁ = h22 gen-

erates a first-order quasi-linear partial differential equation with four independent vari-
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ables (x,y, z, and t) and only one dependent variable (v):

ov ov(, ,s-z ,z-b sy —by,
0_y+5<bys—b+sys—b) "S-b (66)
A4
b _ s-z 1 0s .
"'CX(1 +Y1)(s)(—bx)(s_b)y1 ! [1 - (E) ] +E (a—a> =0,
where s, = 28,5}, = 22,0\ = 32 b, = 22
The characteristic system of Eq. (66) is as follows:
d
Ty = s—zdz 1 z=b (67)
ys=b T Ssob

/ /

dv
VIR o,y + (s~ b s = ) [1- (525) 1] + 515 (% - 4)

Two independent particular solutions of this system can be found by solving the equa-
tions:

d
_y = ’ s—zdz 1 z=b’ (68)
vs=b T Sys=h
# =TT il - : (69)
VI oy + sk - B - b [1- (55) ] + 5 (% -4)
Equation (68) has a solution
4 b z-b
s—b s-p vty (70)

where ¢4 is a constant.
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Equation (69) can be re-written as follows:

I ,{1
av byv=_cx(y1+1)(s'X-b'X)(s-b)V1-1 [1—(2) ]—L(ﬁ—é). (71)

dy s-b s-b s—-b\ot

This is a first-order ordinary differential equation. The solution of the homogeneous
equation is

a(y)
=—" 72
- (72)
where a(y) is an unknown function.
Substituting (72) into (71), we obtain an equation for a:
Ay
, L -z 0s .
2(9) = =6,y + 1)(5} - B~ b)" [1 -(55) ] (57-4)- 73)

Equation (73) has a solution:

Iy
a)=-| {cxm +1)(5} - b3 - b)" [1 -(55) ] +(57-4) }dy"'cz- 74)

Substituting (74) into Eq. (72), we obtain

o /{ (V1 +1)(S, = BL)(s - b):[1b sz)’“]+(%—é)}dy+02 )

or

A4
Cp= v(s—b)+/{cx(y1 +1)(s, - b)(s-b)"1 [1 - (::_;Z) ] + (g —é) }dy (76)

Then, the general solution of Eq. (66) can be written as

A4
0 (v(s—b)+/{c,((y1 +1)(s5 = b)) (s - b)"t [1 - (%) ] + <%—é> }dy,%) =0, (77)
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where @ is an arbitrary function of two variables. With Eq. (77) solved for v, the general
solution can be written in the form

1 z-b
vix,y,z,t) = Ed (E) (78)

'11
_s,j—b {cx(y1+1)(s;-b;()(s_b)w [1_<§_;Z) ]+(%—é>}dy,

s where § is an arbitrary function of one variable.
If we assume again that function ¢ in (78) is of the form

9(x)=c, [1 - —X)AZ] +Cpy, (79)

where 1,, ¢, and ¢, are constants, then functions (63), (59), and (78) satisfying the
mass balance equation and the kinematic boundary conditions are as follows:

44
o U(X,y,z,t) = c,(s-b) [1 - (—) ] +Cbxs1_b’ (80)
Ao
sS-z 1
- () ] N &1)

’11
_ Si_b/cx{(w +1)(s), = b )(s - b)"" [1 _ (%) ] N (%—é)}dy,

obs-z 0sz-b
w(x,y,z,t) = u(x,y,z) o5 3o h
Obs-z asz—b)+<as .)z—b

6_ys—b+0_ys—b E_a s-b’

15 The manufactured solution for the ice pressure can be chosen again as in Pattyn’s

+ v(x,y,z)(
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N
o

higher-order model (Pattyn, 2003):

., b oaxx = am00 OV
p=Gﬁww—pg(s—Z)—2uﬁ+2ua—y—pg(s—2),

or in nondimensional form:

ou ov
=2U— +2U— —(5-2), 83
p=2po+ “ay (s-2) (83)
where non-dimensional ice viscosity

1(0u ov\? 1(106u aw\? 1 (108v ow\?
=|-|=—+= —|==—+6— —|==—+6— 4
H [4(6y+6x> +4(602+ 0)() +4<662+ ay) (84)

_Quov_dudw _ovow]®

Ox0y O0x 0z Oy 0z '

The constructed velocities satisfy the surface and bed kinematic boundary conditions
(22—23) and the mass conservation Eq. (17). However, the constructed velocities and
pressure do not necessarily satisfy the conservation of momentum equations and the
basal and surface boundary conditions. To make the constructed functions into exact
solutions of these equations, we substitute them into those equations and calculate the
right-hand side functions which accommodate the solutions. This can be done when
specific surface s(x,y,t) and bed b(x,y) are chosen.

4.1 A time-dependent analytical solution for a flow with a sinusoidal bed

To generate a particular solution, assume a flow with zero accumulation/ablation rate,
a =0, a sinusoidal bed defined similar to the bed in the benchmark experiment A
in (Pattyn et al., 2008), and an ice surface that changes from a linear sloping surface
to the one that is draped over the bed:

s(x.y.1) = $o(x) + n(x.¥)y(¢). so(x) = —x-tan(a), (85)

b(x.y) = so(x) +n(x.y) -1, (86)
516

TCD
4, 495-560, 2010

Isothermal
full-Stokes ice sheet
models

A. Sargent and
J. L. Fastook

1] i


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-print.pdf
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

where
nx.y)= %sin(Zﬂx)Sin(Zﬂy),
y(t)=1-e7%! ¢, is a constant.

To calculate integral in (81), substitute functions (85—86) for bed and surface into
s the integral in (81). Since it is difficult to calculate the integral analytically for general
constants y4 and A4, particular values, for example, y; =1 and A4 =1, can be chosen.

4.1.1 Parametersy;=1,1,=1

P 0s .
I = /[Zcx(z—b)(sx -bl)+ (E —a)] dy (87)
= [{lz- 5o +1 - nGey] 20,y - 1)+ (60 - 2}y
0 =2nc,(y(t) - 1)cos(27rx)/ [z—so(x) +1- %sin(an)sin(27ry)] sin(2my)dy
+ @sin(Zﬂx)/sin(Zﬂy)dy—/édy

- So(x)+1

= 21c, (y(t) - 1)cos(27x) { i o

! t .
- Z—Qsin(%x)cos(Zny) —ay

- %sin(Zﬂx)/H - COS(47T}/)]dy}

= C,(1-y(t))cos(2mx)cos(2my)(z — Sp(x) + 1) — %g) sin(2mx)cos(2my)

5+ [%CXU —y(t))sin(47rx)—a'] y—%(1 _y(t))sin(4mx)sin(4my). (88)

517

TCD
4, 495-560, 2010

Isothermal
full-Stokes ice sheet
models

A. Sargent and
J. L. Fastook

1] i


http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-print.pdf
http://www.the-cryosphere-discuss.net/4/495/2010/tcd-4-495-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

If we substitute the calculated integral and functions (85—86) for bed and surface into
(80—-82), we obtain the following formulas for velocities:

UK.y 20) = (2= b) ¥ Cpy—t (89)
¢ s-z\" / 1

vzt =—21-(=) |- , 90

vix.y.z.1) s-b (s—b) ] s—b ‘s p (%0)

(91)

(xyzz‘)_u(xyzz‘)<abs z 0sz- b)

0x s b+6xs b
o0bs—- z+6‘sz b N 0s _4 zZ-b
dys-b 0ys-b ot s-b’

For a flow down an infinite plane with a mean inclination tan(a), periodic boundary
conditions for a function f are defined as follows: f(0,y,z+tan(a))=f(1,y,2), f(x,0,z+
tan(a)) =f(x.1,2).

The constructed solutions (89-91), (83) satisfy periodic boundary conditions only in
the horizontal x-direction and do not satisfy periodic boundary conditions in the hori-
zontal y-direction for all values of the input parameters. To satisfy periodic boundary
conditions in all lateral directions, the accumulation-ablation rate may be chosen as
follows: & = a(x, t) = 20X sjn(anx).

Appendix B contains the formulas that can be used to calculate the compensatory
stress terms for the momentum equation. For the 3-D ice-stream flow over a bumpy
bed experiment, the parameters of the flow are chosen as follows: aspect ratio 6 =
80, the startlng linear slope of the ice surface a =0.5°, sliding bed parameters ¢, =

Cpy = =107%, and the remaining constants in (89) and (90) ¢, =c, = 1075, 1, =4, and
C;= 1078, As in 2-D case, all graphs are given for the dimensional values of variables
which are calculated from non-dimensional values using formulas (14).

Figure 10 shows the bed (86) and the ice surface (85) at the time zero and at the time
when the steady-state solution is reached. Ice flow is from left to right. The ice surface
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changes from a linear sloping surface to the surface draped over the topography of the
bed. Ice thickness is spatially uniform when the steady-state solution is reached.

Figures 11, 12, and 13 show the horizontal and vertical velocity and pressure at the
beginning and at the time when the steady-state solution is reached. At the steady-
state, the horizontal velocity field is smoothed out, both x- and y-horizontal velocities
are almost spatially uniform (~46 km/a).

Figure 14 shows the norm of the velocity along the y = 1/4 slide at the beginning
and at the time when the steady-state is reached. Figure 15 shows the transformation
over time of the norm of the surface velocity along the y = 1/4 slide. At the beginning,
velocity has two local maximums, over the bump and over the bed where the bed
changes the most. At the steady-state position, the norm of the velocity is spatially
uniform and at each vertical slide is increasing with ice thickness.

4.2 A steady-state analytical solution for a flow with a linear sloping surface
and a sinusoidal bed

To generate a steady-state solution, assume that in (85) the function y(¢) = 0, that is,
a linear sloping surface and a sloping sinusoidal bed are defined as in the benchmark
experiment A in (Pattyn et al., 2008).

s(x,y) = —x-tan(a), (92)
b(x,y) =s(x,y)-1+ %sin(an)sin(Qny). (93)

The coefficients are 2 =0.5°,1,=2.25, ¢, = cy,=1,Cpx=0Cp, =0, 6= 81—0, and accu-
mulation rate g = Zn¢™0)

All functions, the surface horizontal x- and y-velocities, the vertical z-velocities as
well as the surface ice pressure, for this steady-state experiment are very similar to the
corresponding graphs in Figs. 11, 12, and 13 of the time-dependent experiment at the
beginning time.
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5 Conclusions

The detailed constructions of exact solutions to 3-D and 2-D flowline time-dependent
and steady-state isothermal full-Stokes ice sheet problems are presented. The solu-
tions are valid for non-linear Glen-type flow. The construction of exact solutions done
by using manufactured solution technique (Bueler et al., 2007) while the suggested
experiments follow directly from ice sheet intercomparison (Pattyn et al., 2008).

The steady-state solutions, constructed in this paper, are variations of the benchmark
experiments A and B in (Pattyn et al., 2008). However, by substituting different ice
surface and bed geometry formulas into the derived formulas, analytical solutions for
different geometries can also be constructed.

Although artificially constructed, the solutions may be useful for testing numerical
methods. They offer several benefits to potential ice sheet modelers. By changing a
parameter value, the analytical solutions will allow the modelers to investigate their al-
gorithms for a different range of aspect ratios as well as for different, frozen or sliding,
basal boundaries. The lateral boundary conditions can be specified as periodic bound-
ary conditions or as essential Dirichlet conditions. Specifying Dirichlet conditions, when
the exact solutions are specified as inflow and outflow boundary conditions, allows the
modelers to check the model accuracy in the inside of the problem domain.
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Appendix A

Calculation of compensatory stress functions in 2-D flowline diagnostic
equations

A1 Compensatory terms in diagnostic equations and in the boundary
conditions

The constructed velocities (48—49) satisfy the 2-D versions of the surface and bed
kinematic boundary conditions (22—23) and the mass conservation Eq. (17) but do not
necessarily satisfy the conservation of momentum Eqs. (18-20) and its basal and sur-
face boundary conditions (24—26) and (27-29). Following (Bueler et al., 2007), we
introduce compensatory stresses X, and %, in the conservation of momentum equa-
tions to make the chosen velocity and pressure functions into exact solutions of the
equations.

2uBp) o(u(3%+o%))
ox 0z

O(u(6%%+532)) 0(2u%e+p)

6 ox * 0z

To make the chosen velocities satisfy the boundary conditions, we introduce com-
pensatory terms v,,0,,7,, and 7, in the boundary conditions.
At the upper surface s(x,t), the boundary conditions are as follows:

-3, (A1)

~1=3,, (A2)

10u ow
[— —(2u—+p>+u(6az+6a)]-ux, (A3)
\/1+62 g_
S — [—6— (u (66—W+ l@)) + (2u6—W +p)] —0,. (A4)
/ do 2 dx ox 60z 0z
1+62(a)
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At the lower surface b(x), they are as follows:

1 [ db( ou ) (1 ou 6w)]
— |6 2u—+p|-pul==—+6—1\1| =1, (A5)
1+62(db) ax o0x 60z o0x

ow 10u ow
1+62 db [ ( ( Ix 55))—(2u5+p)]+1=5. (AB)

A2 Calculation of derivatives

Calculation of the compensatory stress terms requires calculation of derivatives of the
exact solutions (48), (49), and (51). To simplify calculation of the derivatives, we re-
write these functions as follows:

1 1 0s .
u(x,z,t)= EI:CX(‘I—O' )+cb—/(a—a>dx], (A7)
od (0s

t)=uh—+ 1-d A8
w(x,z,t) = uh——+ (61‘ )( ), (A8)
where h = h(x,t) is ice thickness and d = d(x,z,t) = |s scaled ice depth. Then, the
first derivatives of functions (A7—A8) are
Ou _ CxA -1
9z d
@——— — ’“a—d+§—é __1fon, , pp0uod 0s_,
ox ox ot ~ hlox 8z 0x ot ’
ow
- - A
0z 6)( (A9)

a_W—@ha_d.Fu%a_d.}.uhaz_d.k 02 aa ( — ) 65 ad
dx 9Ox 0x Oxdx Ox2 axot 0x at “)ox’
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and the second derivatives are
2
6 u _ _CXA(A_ 1)d/1_2,

822 h3

o°u  1|6%h  _onou 30%u (0d\® ,0ud*d 8%s 0a
— == |—u+2———-"FP—|=—) +hr———+—-—=—.
ox? h|ox2 Ox 0x 022 \ 0x 0z 9x2 0Ox0t Ox

oxoz M ox ox ~ h\“ox0z " ox oz
0°w _0%u,0d ,0udhod ,0u 0°d 08°hod , 0ho’d . 8°d

O°u _ 20,4 ; 10h CAA-1) ,,0d 1<26u6u 6d62u>

ax2 ox2 ox “oxoxox “ox oxz Yaxeox Vaxaxz Vox0

8%s 8% 8%s 0a\ad [(ds .\ o°d
+ -2 )(1-d)-2 ) = (2 =—,
ox20t 0x? oxot 0Ox )] ox ot Ox2

w o
0x0z — 0x2’
*w a 8%u
872 0x0z
where, for a surface (52) and a sinusoidal bed (53),
oh os ,
2 o = 10 =1), 2= =40+ 7 () (D)
0s , os .,
22 =10V (), [g2ax=y' (0 [w)dx.
0% _ v O°S
axar = MW (0). o =" (X' (0),
0°h 0°h
—=n0"x)(y@t)-1), — =" (X)(y(t)-1),
52 =T ) =1). == =" () -1)
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10

ad
ax

8%d
ax2

0°d

ox3

2 3

()()—= (x)y (),

,ZI
9s _oh, a_d ] (A11)
0x 6x "0z h’

2
[ w_d_ahd]

ax?
_1
h
_1
h ox X ox2

Bs_jFhod_ondd o'
h x3 " 9x20x 0x dx2 Ox3

If we name the expression

-2 (A12)

_1(16u 0W)2 ou déw

50z " ox

then u = Ve

For further calculations we need the following derivatives:

ou

ox

ou

0z

2n v 60z ox 6 0x0z 0x2 0x2 0z Ox0x0z

2 2 2 2
=1—nE[%(l@+66_W><l 6°u_, 50 w)_a ua_w_@awll (A13)

_i-nu[1(1ou, cow\ (10%  oPw)_ oFuow oudt
T 2nvl|2\60z ox 5872 0x0z Ox0z 8z 0x a2 |’

Substituting (A9—-A10) and (A13—A14) into (A1-A2), (A3—A4), and (A5—-A6) generate
formulas for compensatory terms %, ,%,,0,,0,,7,, and 1,.

If constant 1 in (47) is chosen so that A > 2, then the calculation of the second deriva-
tives is well defined.
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Appendix B

Calculation of compensatory stress functions in 3-D full-Stokes
diagnostic equations

s B1 Compensatory terms in diagnostic equations and in the boundary
conditions

The constructed velocities (80)-(82) satisfy the surface and bed kinematic boundary
conditions (22) - (23) and the mass conservation Eq. (17). They do not necessarily
satisfy the conservation of momentum equations and its basal and surface boundary

10 conditions. Following (Bueler et al., 2007), we introduce compensatory stresses %,,
2,, and %, in the conservation of momentum equations to make the chosen velocity
functions into exact solutions of the equations.

ougten) 2(u(HE)) oz ol

ox oy 0z m .
66(“%;%)) +6a(2‘f;;+p> f(“@%;ﬁa_vyv)) 3, (B2)
15 66('11(6%):%6_?)) +6a(ﬂ <6g;;vy+%a_;>> 6(2/1(;;;_34-'0) =32, (B3)

To make the chosen velocities satisfy the boundary conditions, we introduce com-
pensatory terms v,,0,,0,,7,7,, and 7, in the boundary conditions.
At the upper surface s(x,y,t), the boundary conditions are as follows:

1 0s ou 0s (O0u OJv 10u ow

—|-6=—=[2u— -6—u|l—+— ——+6—| = B4

rs[ 66x(ﬂ6x+p> 66y”(6y+6x)+'u<662+66x)] O (B4)
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1 0s (0u Ov 0s ov 10v ow
—|-s==Zuyl=+= -6 (2u=— ——+6—|| =0, B5
rs[ 0Xu<6y+0X) 6y< u6y+p) +u(6c’>‘z+ ﬁy)] % (59)

1 0s ow 10u 0s ow 10v ow
—l-s= T ) )52 i o= = B
rs[ 66)( (”(6ax+662)> 60y ('u(66y+662))+< “az +p)] 0. (B6)

where rg = \/1 +62 (%)2_,_52 (@)2_

At the lower surface b(x,y), tr?(/a boundary conditions are as follows:
e | R
() o o) s (S rs)
L2 202 o 3 20)- (o) v

b2 %
where r, = \/1 +62(%2)" + 62 (W) :
B2 Calculation of derivatives

10 Calculation of the compensatory stress terms requires calculation of derivatives of the
exact solutions (80-82), (83). To simplify calculation of the derivatives, we re-write
these functions as follows:

u(x,y,z,t) = cX(z—b)+cbX%=cX(1 —d)h+cbx% (B10)
Gy 1 Cpy—1
vixy.z,t) == (1 —d 2) =2 (B11)
s w(x,y,zt)= uhg—z +vh% + (%—a’) (1-4d), (B12)
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10

ou

p= 2u0—+2ug—;—(s 2), (B13)
where h=h(x,y.t)=s(x,y,t) - b(x,y) is ice thickness and d =d(x,y,z,t) = £ is ice
scaled ice depth.
The first derivatives of functions (B10-B12) are as follows:
ou 0b CpyOh Ou 0b Cpx0h Ou
P - Sl = _Zbhx 20 , B14
ox Xox  h2 ox’ oy CX@y 2 8y’ 8z = Cx (B14)
ov_ 1( oh 310d 01
ax"_/y(vax Al ax
ov 1/ 0Oh od 0l
—_— = —— /1 d’12_1 —_
dy h<vﬁy 7 oy Oy)
ov _CSyte 4 10/
0z h2 hoz’
ow _0u,0d 0hdd  0°d Ov od 0hdd . 0°d
dx 9x O0x  0xodx ax2 ox dy  0xdy dxdy
9°s 0a ds .\ ad
-2 la-a)-(=-g) =,
+<6x61‘ 6x>( I) (61‘ a) ax
ow _0ou,0d ohod  0°d ov od ohod 0°d
dy 0y 0x Oy ox 0xdy 0y o8y  0dydy dy2
0°s 0a ds .\ od
= 22 )(-d)-(=-4a) =,
+<ayar 6y>( ) (61‘ a) ay
6—W—@h%+u _62d +@h@+vh—azd +l @—a'
0z 0z Ox 0x0z 0z Oy dydz h\ot ’
2 2
6,0 c’iu 6u+6v +2u ﬂ+ ov —ﬁ,
ax 6)( ox oy 0x2 0x0y ox
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op ou (ou O0Ov °u  8%v ds
=2 2 — )-=,
oy oy (6x+6y)+ #<6x6y+ay2 oy
op . 0u(du v o’y d%v

—— =2_= 2 1,
2z oz (a +0y)+ “<ax0z+ayaz *

and the second derivatives are:

o°u_ &b %(%) S Cn 0% Su_ b %(@)i%ﬁ

ax2 ¥ox2 ox h? 0x2’ dy? X oy? ay h2 ay?’

2 2 c c 2 2 2 2

o°u 0b+2ﬂ@%_ﬂah o°u _o, 0u=0 6u=0’ (B15)

x0y ~x dxdy ~ md 0x0y h? 0xBy' 8z2 0x0z ' Oydz

2 2 2 2 2
ﬂ=—1<2ﬂ@+ oh e Ao (A —1)d*2-2(g—z) +cy/12d’121ad o1 >

ox2 ax0x  ox? 0x2  9x2
8%v 1 dvaoh dvoh  8°h ad ad 8%d 8%
= VAo(Ap = 1)d*e 2= —— + ¢ Ayd*e!
axdy axay Tayax Vaxay TN o S o St axay )
62v 1(,0voh 62 ad\? 62d 62/
-— —(2=— (1, —1)d*2 [ =—= A,g’eT
h< At ) Rt |
2 2 2
v _ 1 g@_ciz(lz )dle—2@+cazd*z1ad+ 0%l
9z0x  _h\ dzox ox Y 0x0z 0x0z
2 ¢, Ao 2 2,
o°v _ _1fovon o= , ,0d a1 99, 1
626y h 0z ay 0ydz 0ydz
0% _ o Ay(Ay - dAz—z
822 h3 '

2 2 2 3
o°w 26h6d6u 2h6d6u hadau 0°h ad 26h6d 0°d

—_— _ _ —Uu

0x2 0x O0x 0x 0x2 0x 0x 0x2 6)(2 ax 0x 0x2 0x3
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10

2w
ay?

0yoz

0hdd ov

Ox Oy 0x

oh 0%d - a%d ,
Ox 0x0y 0x20y

8°d ov

ov_,od 8%v .\ 8°h ad
0x0y 0x

— v+
Oy 6x2 09x2 0y

8%s  8%a 8%s 08a\ad [(os .\ o%d
+ (1-d)-2 )= (=g ==,
ox20t 0x? oxot ox ) ox ot ox?

—2@6_0'%4. 62—d%+ a_d@+ﬁa_du+ % 620’ u+ an u
" "oy ox oy dxdy dy  0x dy2 Qy2 Ox dy dxoy dx0y?
dh dd dv 8°d v dd 8°v 8°had oh 8°d %d
————+2h——+h——+——v+2——v+h—v
dy dy oy 8y2 oy Oy dy2 0y2 0y Oy dy? oy’

8%s 6% 8’s 0a\ad (8s .\ o%d
+ [ —— -2 )(-0)-2(—2-2Z2)=—=-(=-3)—,
oy20t 0dy? oyot 0y ) oy ot y?

—62d @+ @@+h—asd u+ _02d @+ @@+h 6°d v
Ox0z0z 0x §z2  Ox0z2 0y0z0z 0y 9z2 09ydz2
dhdd du  8°dou . 0d 8°u 8h 8%d %d 8%d du
=—— — th—— +h— +— U+ U+ —
Ox 0x 0z 0x2 0z Ox 0x0z 0Ox 0x0z 0x20z 0x0z Ox
dhodov | 8°d ov  ad 8°v 8h 9°%d 8%d 8%d ov
+ ——— 4h—— — +h— +— v+ v+ —
0x 0y 0z 0x0y 0z 0y 0x0z 0x0yodz 0x0ydz 0y0z 0x
1( s _0a\_tonos_,
h\ 0xot 0Ox h2 0x \ Ot ’
dhdd du . 8°d du ,8d d°u Bh 8%d 8%d 8%d du
+ —— — 4h——— +h— +— u+ U+ —
Oy 0x 0z 0x0y 0z Ox 0ydz 0Oy 0x0z 0x0yoz 0x0z 0y
, Ohodov 62_dﬂ+ ad 8% L on 9%d - 8%d - 0°d ov
6y oy 0z dy2 0z 0y 0ydz 0Oy 0yoz 02ydz 0ydz oy
1( 0% _0a\_10n(os_,
h oyot oy h2 8y \ ot ’
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where

od
ox
9%d
0x2
8%d

0x0y
8%d
ox3
2
oys

1(_6ho%d
=——(3—="—"+3
h( 6y6y2+

8°hod 8°h 8°

— T ig=—-Z2),

ox2 dx ox3 0x8

8°hod 8°h &°

— —4d—-"1),

oy20y  oy® oyd
530

dh 8%d
—— (3= 3
( dx ox2 ox2

1 0h

h2dy’

ds 0s ds 0

== ax" Lyo). a—y—a—ﬁv()

8%s 0°n 8’s  9°n d%s  0°n

o = 32" 572 372" 333y = ey VO

8%s onoyt) 8%s onady(t)

ox0t  0x ot dydt oy ot

8% _d°noy(t) 8% _9°noy()

axzat_ﬁ ot ' ay28t oy? ot

=1+n(xy)y(t)-1),

ah on oh o1

ax = 5 YO 5= 5 (=),

8h o° 82 a a’h  8°

2 = 2a0-1, 2= -1, 1 = Lo -,

dh ay(t) 8°h dnay(t) 8*h onaoy(t)

ot -5 555t " ax ot ayat "y ot

1(8s _0h\ od 1(ds _oh\ od 1

i (5 %) 555 5%) 5= F

_(62 _ % 26h6d> az_d_l<&_d@ 26h6d>
ox2 9x2 0x0x ) ay2 h\ay2 oay2 0Oyody)’
<02 ohod _ohod _ 62h) 0°d _10h 8°d _

h\oxdy o8xdy 0dyodx oxdy ) 0xdz h2ox dydz
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a3d

6x26y -

a3d
oxod y2
a3d

0x20z

0°%d
0x0ydz

ol
ox

ol

<6h62 ,0h 9%d ) 9°h 8d 8°had 3%h 3%s )

oy ox2 " 2ax oxay Taxay ox T oxz oy T ax2ay ~ ox2oy
_ 0ho’d ,0h 8°d , 9°h od 9°hod . 8°h _ 0’
- ox ay2 ayaxay dOxdy 8y  dy20x  By20x Oy20x
N 2 0% _1 ﬁ_g(@)z
m “oy20z  h2|ay2 h\ay) |’
_ _3@@ 0°d__, 0% _
B axay hoxdy | oxoz2~ ~ dydz2

= —C,(1-y(t))cos(2my) [2m(z - 55(x) + 1)sin(2mx) + s (x)cos(2mx)] - @cos(%x)

y(t))cos(4mx)sin(4my),
y'(t)

+ cos(2my) [7120)((1 - y(t))cos(4mx) - 6_;3(

— = =2mc,(1-y(f))cos(2mx)sin(@my)(z — so(x)+ 1) + —S|n(27rx)sm(27ry)

oy

ol

0z

8?1

ax?

0%l
oxoy

+ [%CXU —y(t))sin(dmx) - a] - ”ZX (1= y(t))sin(4mx)cos(4my),

= ¢, (1-y(t))cos(2mx)cos(2my),

= —c,(1-y(t))cos(2my) [4T2(z - 5o(x) + 1)cOS(2mx) — 4TS, (x)sin(27x)] + 7y’ (t)sin(2mx)
— cos(2my) [4n3cx(1 —y(t))sin(4mx) + %l y +m2c, (1 - y(t))sin(4mx)sin(4my),

= 2mc, (1 - y(1))sin(2my) [211(z - 5, (x) + 1)sin(2mx) + s, (x)cos(2mx)] + Ty’ (t)cos(2mx)

+ sin(2my) [ﬂzcx(1 —y(t))cos(4mx) - g—i] —m2c,(1-y(t))cos(4mx)cos(4my),
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8%l

-2mc,(1-y(t))cos(2my)sin(2mx),

0x0z
2
Z y; = —4m?c, (1 - y(t))cos(2mx)cos(2my)(z ~ So(x) + 1) + TY'(t)sin(2mx) cos(2my)
+ m2c, (1 -y(t))sin(4mx)sin(4my),
ol .
3y0z = —2mc, (1 -y(t))cos(2mx)sin(2my).

If we name the expression

1(0u ov\? 1(10u _ow\%® 1(10v _ow\2 Gudv odudw dvow
= + 6 + 6

"=2\ayTox) Ta\saz"°ax) Ta\53z2"°%y) “oxoy oxoz oyoz’
thenu=v12;n".

For further calculations we need the following derivatives:
ou 1-nu |1 (0u 0ov 8%y d%v 1/10u ow 1 0%u w
0w —=——= |=[—+=—])|=——+— )+ [z=—+0— || z=——+6—
ox 2n v |2\dy 0Ox Ox0y 0x?2 2\6 0z ox 6 0x0z ox2
+l lﬂ +66_W l 62V +662_W
2\6 0z oy 6 0x0z 0x0y

d’udv 0du 8*v d*udw obu d*w  B°v Aw v azwl

0x20y 0x0x0y 0x20z 0Ox0x0z O0x0y 0z Oy Ox0z
du 1-nu |1/(6u ov\ [d°u &% 1(10u _ow\ [1 d°u w
—==—= |z |=+t=— | —=+— )+ z—+6— )| ==——+6——
oy 2n v |2\0y O0Ox dy2 0x08y 2\60z ox 6 0yoz oxoy
1/(10v ow 1 8%y o*w
—|==—+6— || = 56— B17
+2<662+ 6y)(66y02+ 6y2) (B17)

0%u dv oud®v 8%u ow du *w d*vow av 62W]

15 —_——— T - =

Ox0y 0y 0Oxody2 0x0y 0z 0Ox0ydz 0oy20z 0Oyodydz
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15

20

25

ou 1-nu |1/(0u ov 8%u d%v 1/10u ow 10%u 2w
— == |- |=—=F=—| | —F+— )+ = |=—+6— || =— + 6 ——
8z 2n v |2\dy dx oydz 0x0z 2\60z ox 6 8z2 0x0z
+l lﬂ+6a_w l&+662_w
2\80z oy 6 022 0yoz

8%u dv du d%v 8%u ow dud*w 8%v ow avé'zwl

0x0z0y 0x0ydz 0x0z 0z O0Ox §z2 O0ydz 0z 0Oy §z2

Substituting (B10-B14) and (B17) into (B1-B3), (B4-B6), and (B7—B9) generate formulas for
compensatory terms 2,,% ,%,,0,,0,,0,,74,7,, and 7,.

If constant 1, in (B11) is chosen so that 1, > 2, then calculation of the velocities’ first and
second derivatives is well defined.

Appendix C

FORTRAN 77 program to calculate exact solutions and compensatory stress
functions for 2-D flowline benchmark experiment

C1 parameter2d.h

LOGICAL steady, dimensional

DOUBLE PRECISION lambda, Lx

PARAMETER (lambda=4.,cx=1.e-6,cb=1.e-6,ct=1.e-6)
PARAMETER (steady=.false., dimensional=.true.)
PARAMETER(Lx=80000.,nx=100,nz=100,nt=9,dt=1.e+7)

lambda, cx, cb ,ct - parameters of the manufactured solution;
Lx - horizontal length of the domain for dimensional problem;
nx,nz - grid sizes, nt - number of time steps, dt - time step;
steady = .true. for steady-state experiment,
= .false. for time-dependent experiment;
dimensional = .true. to dump dimensional values of solutions,
= .false. to dump non-dimensional values of solutions.

O00000000
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15

20

25

30

35

C2 exact2d.f

c

O0000000000000000000O00

2-D full-Stokes flowline ice sheet model.

Parameter of the model: lambda, cx, cb, ct,
Parameter of the flow Lx(horizontal length scale of the domain), and
Parameter of the grid: nx, nz, nt, dt
- assigned in "parameter2d.h".
Bed and surface topography defined in SUBROUTINE 'testB’.

Exact solutions are dumped (in format: x z f) to files:

2du - horizontal velocity u (in km/a, if dimensional),
2dw - vertical velocity w (in km/a, if dimensional),
2dp - pressure p (in kPa, if dimensional),
2dunorm - sgrt(u  *u+wxw) (in km/a, if dimensional),
2dmu - effective viscosity (in Pa sec™2, if dimensional).
Compensatory stress terms are dumped to files:
2dsigx - horizontal component of momentum equation
2dsigz - vertical component of momentum equation
2dsurfx - horizontal component of top boundary condition
2dsurfz - vertical component of top boundary condition
2dbedx - horizontal component of bottom boundary condition
2dbedz - vertical component of bottom boundary condition

[eXeNe]

IMPLICIT REAL *8(a-h,0-z)

include "parameter2d.h"

DIMENSION u(nx,nz),w(nx,nz),p(nx,nz)
DIMENSION x(nx),z(nx,nz),bed(nx),surf(nx)
DIMENSION sigx(nx,nz),sigz(nx,nz)

DIMENSION bedx(nx),bedz(nx),surfx(nx),surfz(nx)
DOUBLE PRECISION mu(nx,nz)
PARAMETER(eps=1.e-20)

CALL scales(delta,sx,sz,sp,su,sw,smu,st,ssig,ssigb)
print  *’'steady=',steady,” dimensional=',dimensional
print  *,model parameters: cx=',cx,” cb=',cb,’ ct=',ct
print  *,’domain: ’,sx,” by’,sz

beginning of the time loop

DO k=1,nt
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C
c
C

[eNeXe!

[eXeXe)

[eXeNe]

tt=(k-1)  *dt
dx=1./(nx-1)
--- beginning of the x- loop
DO i=1,nx
xx=(i-1)  *dx

CALL testB(xx,tt,b,dbdx,d2bdx2,d3bdx3,s,dsdXx,

& d3sdx3,dsdt,d2sdxdt,d3sdx2dt,dsdtint)

X(i)=xx

surf(i)=s

bed(i)=b

h=surf(i)-bed(i)

dhdx=dsdx-dbdx

d2hdx2=d2sdx2-d2bdx2

d3hdx3=d3sdx3-d3bdx3

dz=h/(nz-1)

--- beginning of the z- loop

DO j=1,nz
z(i,j)=bed(i)+(j-1) *dz
d=(surf(i)-z(i,j))/h
dddz=-1./h
dddx=(dsdx-dhdx  *d)/h

d2ddx2=(d2sdx2-d2hdx2  *d-2. *dhdx * dddx)/h

d3ddx3=(d3sdx3-3.  *d2hdx2 * dddx-3.

--- Calculate velocities

u(i,j)=(cx *(1-d ** lambda)+cb-dsdtint)/h
w(i,j)=u(i.j) *h*dddx+dsdt * (1-d)

--- Calculate the first derivatives

dudz=cx xlambda *d** (lambda-1)/h  *x 2
dudx=-( dhdx *u(ij)+h  * 2+ dudz » dddx+dsdt )/h

dwdz=-dudx
dwdx=dudx * h+ dddx~+u(i,j)
& +u(i,j)  *h*d2ddx2+d2sdxdt

--- Calculate the second derivatives

* dhdx * dddx
* (1.-d)-dsdt
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c

[eXeNe]

[eXeXe]

O000

d2udz2=-cx *lambda * (lambda-1) =*d* (lambda-2)/h  ** 3
d2udx2=-( d2hdx2 =*u(i,j)+2  *dhdx*dudx

& -h #* 3% d2udz2 * dddx ** 2+h*+x 2% dudz * d2ddx2-d2sdxdt )/h
d2udxdz=-( 2 *dudx *dudz+dddx *d2udz2 )/h
d2wdx2=d2udx2 *h*dddx + 2 *dudx *(dhdx *dddx+h * d2ddx2)

& + u(ij) *(d2hdx2 *dddx+2. *dhdx * d2ddx2+h * d3ddx3)

& + d3sdx2dt *(1.-d)-2.  *d2sdxdt *dddx-dsdt *d2ddx2
d2wdxdz=-d2udx2
d2wdz2=-d2udxdz

--- Calculate the effective viscosity and pressure:

sxz=dudz/delta+delta * dwdx
dsxzdx=d2udxdz/delta+delta * d2wdx2
dsxzdz=d2udz2/delta+delta * d2wdxdz

xnu=0.25 *sxz ** 2-dudx *dwdz
mu(i,j)=(xnu+eps) *x (-1./3.)
p(ij=2.  +mu(ij) *dudx-surf(i)+z(i])

--- Calculate the compensatory stress terms:

dmudx=(-1./3)  *mu(i,j)/(xnu+eps) *

& (0.5 *sxz *dsxzdx - d2udx2 *dwdz-dudx *d2wdxdz)
dmudz=(-1./3)  *mu(i,j)/(xnu+eps) *
& (0.5 *sxz *dsxzdz - d2udxdz =*dwdz-dudx *d2wdz2)

dpdx=2 * dmudx* dudx + 2+*mu(i,j) *d2udx2-dsdx
dpdz=2 » dmudz* dudx + 2*mu(i,j) *d2udxdz+1
sigxx=delta  * (2 *dmudx*dudx+2 *mu(i,j) *d2udx2 + dpdx)
sigxz=dmudz *sxz+mu(i,j)  *dsxzdz
sigx(i,j)=sigxx+sigxz
sigzx=delta  *(dmudx * sxz+mu(i,j)  *dsxzdx)
sigzz=2 »dmudz*dwdz+2+*mu(i,j) *d2wdz2 + dpdz -1.
sigz(i,j)=sigzx+sigzz

--- Calculate the compensatory stress terms for

the upper surface boundary conditions:

IF(.eq.nz) THEN
r=delta *dsdx
rinv=21./sqrt(1.+r *T)
sxx=2. *mu(i,j) *dudx+p(i,j)
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O000

C
C
Cc

(@]

szz=2. »mu(i,j) *dwdz+p(i,j)

surfx(i)=rinv *(-r xsxx+mu(i,j)  *sxz)
surfz(i)=rinv *( -r *mu(i,j) *sxz+szz)
ENDIF

--- Calculate the compensatory stress terms for
the basal boundary conditions:

IF(j.eq.1) THEN
r=delta *dbdx
rinv=1./sqrt(1.+r *T)
sxx=2. *mu(i,j) *dudx+p(i,j)
szz=2. »mu(i,j) *dwdz+p(i,j)
bedx(i)=rinv * (1 *sxx-mu(i,j) * SXZ)
bedz(i)=rinv *( r *mu(i,j) *sxz-szz)+1.

ENDIF
ENDDO ! end of z- loop
ENDDO ! end of x- loop

CALL dumpsurf(k,x,z,u,w,surf,bed,
& surfx,surfz,bedx,bedz)

--- Dump the values at the desired time:

IF(k.eq.1 .or. k.eq.nt) THEN
CALL dump(k,x,z,u,w,p,mu,sigx,sigz,

& surfx,surfz,bedx,bedz)
ENDIF

ENDDO I end of time loop

STOP

END

O0000000

SUBROUTINE testB(x,t,b,dbdx,d2bdx2,d3bdx3,s,dsdx,
& d3sdx3,dsdt,d2sdxdt,d3sdx2dt,dsdtint)

Return the values of the bed, surface, and their derivatives

for a given values of x and t.

Input:
X - horizontal coordinat of the column of ice,
t - time.
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IMPLICIT REAL *8(a-h,0-z)
include "parameter2d.h"

tana=tan(0.5)

TCD

omega=8. *atan(1.) 12 xpi
C - 4, 495-560, 2010
sOx = -tana *X
sOxp = -tana
eta = 0.5 =*sin(omega *Xx) Isothermal
etap = 0.5 *omegarcos(omega *X) .
etap2 = -0.5 =*omegar+ 2*sin(omega *X) fu"-st0kes ice sheet
etap3 = -0.5 =*omegar+ 3*cos(omega *X) models
etaint = -0.5/omega * cos(omega *X)
IF(;E:;% 'Zr'ot.'eq'o') THEN A. Sargent and
gammap = 0. J. L. Fastook
ELSE
gamma = l-exp(-ct xt)
gammap = ctxexp(-t)
C ---
b = sOx-1l+eta
dbdx = sOxp+etap
d3bdx3 = etap3
d2sdx2 = etap2 =*gamma
d3sdx3 = etap3 *gamma
dsdtint = gammap *etaint
d3sdx2dt = etap2 *gammap
RETURN
C
SUBROUTINE dump(k,x,z,u,w,p,mu,sigx,sigz, _
& surfx,surfz,bedx,bedz)
C
C Dumps values of exact solutions and compensatory stresses _I
C at the specified time step k.
c e D
C Dumps dimensional values if 'dimensional’=.true.
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and nondimensional, otherwise.

IMPLICIT REAL *8(a-h,0-z)
INCLUDE "parameter2d.h"
DOUBLE PRECISION mu(nx,nz)
DIMENSION u(nx,nz),w(nx,nz),p(nx,nz)
DIMENSION x(nx),z(nx,nz),bed(nx),surf(nx)
DIMENSION sigx(nx,nz),sigz(nx,nz)
DIMENSION bedx(nx),bedz(nx),surfx(nx),surfz(nx)
CHARACTERR0 string, out(11)
CALL scales(delta,sx,sz,sp,su,sw,smu,st,ssig,ssigb)
IF(k.It.10) THEN
WRITE(unit=string,fmt="(11)") k

else

WRITE(unit=string,fmt="(12)") k

ENDIF

out(1)="2du’//string
out(2)="2dw'//string
out(3)="2dp’//string
out(4)="2dunorm’//string
out(5)="2dmu’//string
out(6)="2dsigx'//string
out(7)="2dsigz'//string
out(8)="2dsigsurfx'//string
out(9)="2dsigsurfz’'//string
out(10)="2dsigbedx’//string
out(11)="2dsigbedz’//string

DO i=21,31

OPEN(i file=out(i-20))

ENDDO

DO j=1,nz

DO i=1,nx
xx=x(i)
zz=z(i,j)
WRITE(21,
WRITE(22,
WRITE(23,
WRITE(24,

WRITE(25,
WRITE(26,
WRITE(27,

*) XX,zz,u(i,j) *SU

*) XX,2Z,W(i,j) * SW

*) xx,zz,p(i.j) *Sp

*) xx,zz,sqrt(u(i,j) *U(i,j) *suxsu
+w(ij)  *w(i,j) *swxsw)

*) xx,zz,mu(i,j) *Smu

*) XX,zz,Sigx(i,j) * SSig

*) xx,zz,sigz(i,j) * SSig
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0

ENDDO

ENDDO

DO i=1,nx
xx=x(i)
WRITE(28, *) xx,surfx(i) * ssigh
WRITE(29, *) xx,surfz(i) * ssigh
WRITE(30, *) xx,bedx(i) * ssigh
WRITE(31, *) xx,bedz(i) * ssigh

ENDDO

DO i=21,31
CLOSE(i)

ENDDO

END

SUBROUTINE dumpsurf(k,x,z,u,w,surf,bed,
& surfx,surfz,bedx,bedz)

O000000

Dumps values of bed and surface, as well as compensatory
stresses at the top and the bottom surfaces.
at the specified time step k.
Dumps dimensional values if 'dimensional’=.true.
and nondimensional, otherwise.

IMPLICIT REAL *8(a-h,0-2)
INCLUDE "parameter2d.h"
DIMENSION x(nx),z(nx,nz),bed(nx),surf(nx)
DIMENSION u(nx,nz),w(nx,nz)
DIMENSION bedx(nx),bedz(nx),surfx(nx),surfz(nx)
CALL scales(delta,sx,sz,sp,su,sw,smu,st,ssig,ssigb)
IF(k.eq.1) THEN
OPEN(41,file="2dsb.data’)
OPEN(42 file="2dsurfvel.data’)
OPEN(43,file="2dsurfx.data’)
OPEN(44 file="2dsurfz.data’)
OPEN(45,file="2dbedx.data’)
OPEN(46,file="2dbedz.data’)
DO i=1,nx
WRITE(41, *) x(i),bed(i) *SZ
ENDDO
WRITE(41, *) -99999,0
WRITE(41, *) 'bed’
ENDIF
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DO i=1,nx

xx=Xx(i)
WRITE(41, *) xx,surf(i) *SZ
WRITE(42, ) xx,sqrt(u(i,nz) xu(i,nz) *suxsu
& +w(i,nz) *w(i,nz) *swxsw)

WRITE(43, *) xx,surfx(i) * sigh
WRITE(44, *) xx,surfz(i) *sigh
WRITE(45, *) xx,bedx(i) *sigh
WRITE(46, *) xx,bedz(i) *sigb
ENDDO
DO i=41,46
WRITE(i, *) -99999,0
WRITE(i, *) 't=",dt *(k-1) =st

ENDDO
IF(k.eq.nt) THEN
DO i=41,46
CLOSE(i)
ENDDO
ENDIF
RETURN
END
C
SUBROUTINE scales(delta,sx,sz,sp,su,sw,smu,st,ssig,ssigb)
C
C Defines scales.
C
IMPLICIT REAL *8(a-h,0-z)
include "parameter2d.h"
C -
n = 3. | Glen's parameter
rho = 910. I [kg/m’3]
g = 981 I [m/sec™2]
A = l.e-16 I [Pa’(-n)a™(-1)]
spyr = 31556926. I [secl/a]
SX = Lx I [m]
sz = 1000. I [m]
delta = sz/sx ! aspect ratio
C ---

IF(dimensional) THEN

sp = rho »g*sz ! [Pa=kg/m/sec™2]
su = (2 xsp) »* nxsx*A I [m/a]
sw = su*sz/sx I [m/a]
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smu = 0.5 A= (-1./n)  *(su/sx) =+ ((1.-n)/n) ! [Pa sec"2]
st = sx/su I [a]
ssig = splsz | stress scale [J=Pa/m]
ssigh = sp ! bound.stress scale [Pa]
C -
su *0.001 in km/a
sw+0.001 in km/a

su !
!

sp »0.001 I in kPa
!
!

sw
sp
ssig = ssig *0.001
ssibg = ssigb  *0.001
ELSE
sx=1.
sz=1.
sp=1.
su=1.
sw=1.
smu=1.
st=1.
ssig=1.
ssigb=1.
ENDIF
RETURN
END

in kJ
in kPa

C
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Table 1. Constants for the benchmark experiments.
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Constant Value Units
A Ice-flow parameter 107 Pa"a™
o lce density 910 kg m™
g Gravitational constant 9.81 ms2
n

Exponent in Glen’s flow law 3

Seconds per year

31556926 sa
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Fig. 1. 2-D flowline steady-state manufactured solution (coefficient 1 = 4): horizontal compo-
nent of velocity scaled to the surface velocity as a function of dimensionless thickness. Hori-
zontal velocity increases with the fourth power of ice thickness. Most shearing ice concentrated
near the glacier base which is similar to lamellar flow.
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Fig. 2. 2-D flowline time dependent experiment - ice stream flow over bumpy bed. The left
graph shows the steady bed and transformation over time of the ice surface. The right graph

Horizontal scaled d

shows transformation over time of the norm of the surface velocity (in km/a).
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Fig. 3. 2-D flowline time dependent experiment — ice stream flow over bumpy bed. The graphs
show the horizontal velocity v at the beginning (left) and at the time when the steady-state
solution is reached (right). At the beginning, the horizontal velocity is anti-correlated with ice
thickness: it is larger over the bump than over the trough. At the steady-state, the horizontal
velocity is spatially uniform and increases from the bed to the surface with power of 1 = 4 of the
ice thickness.
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Fig. 4. 2-D flowline time dependent experiment - ice stream flow over bumpy bed. The graphs
show the vertical velocity w at the beginning (left) and at the time when the steady-state solution
is reached (right). At the beginning, the vertical velocity is largest at the bed where ice shearing
is the largest. At the steady-state, the vertical velocity is almost uniform in every vertical slide.
This is consistent with ice-stream flow.
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Fig. 5. 2-D flowline time dependent experiment - ice stream flow over bumpy bed.
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The graphs

show ice pressure p at the beginning (left) and at the time when the steady-state solution is
reached (right). The ice pressure is proportional to the ice thickness. At the steady-state, it is

equal zero at the ice surface.
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Fig. 6. 2-D flowline time dependent experiment — ice stream flow over bumpy bed. The graphs
show the compensatory horizontal (left) and vertical (right) stress terms in the conservation of
momentum equation at the beginning (top) and at the time when the steady-state solution is
reached (bottom). Stress terms are in kd. The graphs show that at the beginning both stress
terms have largest values over the bump. At the steady-state solution, the stress terms are
zeroes almost everywhere except a small surface layer.
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Fig. 7. 2-D flowline steady-state experiment — version of experiment B from (Pattyn et al.,
2008) (flow with a linear sloping surface and a sinusoidal frozen bed). The graph shows the
horizontal (left) and vertical (right) velocity fields. The horizontal velocity is anti-correlated with

ice thickness.
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Fig. 8. 2-D flowline steady-state experiment — version of experiment B from (Pattyn et al.,
2008) (flow with a linear sloping surface and a sinusoidal frozen bed). The graph shows ice
pressure (left) and the norm of the surface velocity (right). The surface velocities are larger
over the bump and smaller over the trough. This is consistent with the observation that in 2-D
flowline experiments the ice cannot flow around the bumps. Pressure is proportional to the ice
thickness.
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Fig. 9. 2-D flowline steady-state experiment — version of experiment B from (Pattyn et al.,
2008) (flow with a linear sloping surface and a sinusoidal frozen bed). The graph shows the
horizontal (left) and vertical (right) compensatory stresses %, and Z, in the conservation of

momentum equations (in kJ).
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Fig. 10. 3-D time dependent experiment — ice flow over a bumpy bed. The top graph shows
the bed and ice surface at the beginning. All distances are scaled. The bottom graph shows
the bed and ice surface at the steady state. Ice flow is from left to right. The ice surface
changes from a linear sloping surface to the surface draped over the topography of the bed.
Ice thickness is spatially uniform when the steady-state solution is reached.
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Fig. 11. 3-D time-dependent experiment. The left and right graphs show the ice surface x- and
y-horizontal velocity respectively at the beginning. At the time when the steady-state solution
is reached, both velocities at the surface are uniform and have values of 46 km/a.
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Fig. 12. 3-D time-dependent experiment. The graphs show the ice surface vertical velocity at
the beginning (left) and at the time when the steady-state solution is reached (right).
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Fig. 13. 3-D time-dependent experiment. The graphs show the ice surface pressure at the
beginning (left) and at the time when the steady-state solution is reached (right).
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Fig. 14. 3-D time-dependent experiment. The graphs show the the norm of the velocity
along the y = 1/4 slide at the beginning (left) and at the time when the steady-state is reached
(right). At the beginning, velocity has two local maximums, over the bump and over the bed
where the bed changes the most. At the steady-state position, velocity is spatially uniform and
proportional to the ice thickness.
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Fig. 15. 3-D time-dependent experiment. The graph shows the transformation over time of
the norm of the surface velocity along y = 1/4 slide. At the beginning, velocity has two local
maximums, over the bump and over the bed where the bed changes the most. At the steady-
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